
The saltunnel protocol

Jay Sullivan

July 13, 2020

Abstract

The saltunnel protocol is a cryptographically secure transport protocol. It is used by the
saltunnel utility, which allows one to augment a normally-insecure TCP session with state-of-
the-art security, with minimal hassle and minimal impact on performance. This paper describes
the protocol used between the saltunnel software’s client and server. In most cases, the term
“saltunnel” can be used to refer to either the software or the protocol.

1 The saltunnel protocol
1.1 Overview
A saltunnel session occurs between a saltunnel client and a saltunnel server, both which share,
as a prerequisite, a 256-bit shared long-term key k. The normal flow of the protocol works as follows:

(1)
(2)
(3)
(4)

client server
clienthi→

← serverhi

message(0)→
message(n)⇒⇐ message(n)

...⇒⇐ ...

1. The client connects to the server, and immediately sends a clienthi (defined later).

2. The server receives the clienthi, and, if it passes verification, responds with a serverhi
(also defined later). However, the server must wait until it has authenticated the client before
performing any non-idempotent or resource-intensive actions (e.g., in some protocols, certain
behavior may occur as soon as a connection is opened).

3. The client then receives the serverhi, and, if it passes verification, the client has now
authenticated the server: this means the client is now permitted to read (or forward
somewhere else to be read) any data received from the server. The client then sends its first
message to the server.

4. The server receives the client’s first message, and, if it passes verification, the server has
now authenticated the client, and therefore the server may now considered the connec-
tion established. At this point, if the server needs to, it may perform any non-idempotent
or resource-intensive behavior which needs to be performed immediately after connection es-
tablishment. At this point, both parties have authenticated each other. They may now both
freely send each other messages.
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1.2 The clienthi
The clienthi has the following structure:

clienthi =



uint8 nonce[24]
uint8 auth[16]
uint8 version[8]
uint8 public_key[32]
uint64 timestamp
uint8 machine_id[16]
uint64 machine_counter
uint8 zeros[400]

The entire clienthi structure is 512 bytes in length, and consists of a 24-byte random nonce
(nonce), a 16-byte authenticator (auth), with remaining fields enclosed in a 472-byte encrypted
“box”.

The clienthi box is encrypted/authenticated (by the client, before sending) using the
xsalsa20poly1305 cipher [1] [2] [3] with a fresh random nonce nonce and the shared long-term key
k, resulting in authenticator auth. The contents of the box are as follows:

1. version - The 16-byte string 0x060528849a6108c7 (for saltunnel-1.0.0).

2. public_key - A 32-byte ephemeral curve25519 public key [4]; an ephemeral keypair is gener-
ated for use only within this connection, and erased as soon as the connection is terminated.

3. timestamp - A 64-bit, big-endian encoded, unsigned integer representing the epoch time in
seconds (i.e., number of seconds since 1970-01-01T00:00:00Z) according to the client’s system
clock.

4. machine_id - A 16-byte unique string which uniquely identifies this machine along with the
last time it has rebooted. For example, a hash of both the machine’s /etc/machine-id (or
MAC address) and last boot timestamp.

5. machine_counter - A 64-bit, big-endian encoded, monotonic (always increasing, never repeat-
ing) unsigned integer which must be unique and monotonic (per machine_id) since (at least)
the last boot. (For example, clock_gettime(CLOCK_MONOTONIC, ...).)

6. zeros - Always set to zero.

As soon as the server receives the client’s clienthi, it (the server) immediately performs the
following validation steps:

7. Verify+decrypt the encrypted data with nonce nonce, authenticator auth, and key k.

8. Verify that version equals 0x060528849a6108c7 (for saltunnel-1.0.0).

9. Verify that timestamp is not older or newer than 1 hour according to the server’s system clock.

10. Verify that, considering each clienthi ever received matching the current packet’s machine_id,
that this instance of machine_counter (a 64-bit big-endian unsigned integer) is greater than
than all previous instances.

If any of the above steps fail, the server will immediately close the TCP connection—no error
will be sent back to the client. Otherwise, the server responds with a serverhi.

2



1.3 The serverhi
The serverhi has the following structure:

serverhi =



uint8 nonce[24]
uint8 auth[16]
uint8 version[8]
uint8 public_key[32]
uint8 proof[16]
uint8 zeros[416]

The entire serverhi structure, like the clienthi, is also 512 bytes in length, and consists of a
24-byte random nonce (nonce), a 16-byte authenticator (auth), and a 472-byte encrypted “box”.

The serverhi box is, similar to clienthi, is encrypted/authenticated (by the server, before
sending) using the xsalsa20poly1305 cipher with a fresh random nonce nonce and the shared
long-term key k, resulting in authenticator auth. The contents of the box are as follows:

1. version - The 16-byte string 0x060528849a6108c7 (for saltunnel-1.0.0).

2. public_key - A 32-byte ephemeral curve25519 public key; an ephemeral keypair is generated
for use only within this connection, and erased as soon as the connection is terminated.
Additionally, the server session key (not to be confused with the shared long-term key k) can
now be calculated. The server session key is calculated by peforming an ECDH (elliptic-curve
Diffie-Hellman) operation on both the client’s and server’s public keys, then using the resulting
curve point as the first 32-bytes of input to (with the last 32-bytes of input being set to zero)
the salsa20 hash function, then taking the last 32 bytes of the output.

3. proof - The 16-byte value (client_session_key[0..15] ⊕ server_session_key[16..31]).
This proves to the client that the server knows both session keys.

4. zeros - Always set to zero.

As soon as the client receives the server’s serverhi, it (the client) immediately performs the
following validation steps:

5. Verify+decrypt the encrypted data with nonce nonce, authenticator auth, and key k.

6. Verify that version equals 0x060528849a6108c7 (for saltunnel-1.0.0).

7. Calculate the server session key (as explained previously), and verify the proof.

If any of the above steps fail, the client will immediately close the TCP connection—no error will
be sent back to the server. Otherwise, if all steps so far were successful, then the client now trusts
the server.

The client can now calculate the client session key (not to be confused with the shared long-term
key k or with the server session key). The client session key is calculated by peforming an ECDH
(elliptic-curve Diffie-Hellman) operation on both the client’s and server’s public keys, then using the
resulting curve point as the first 32-bytes of input to (with the last 32-bytes of input being set to
zero) the salsa20 hash function, then taking the first 32 bytes of the output.

The client then must send its first message before the server will consider the client trustworthy
(i.e., before the server performs any non-idempotent actions).
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1.4 Messages
Messages are always exactly 512-bytes in length, and consist of a 16-byte authenticator followed by
a 496-byte encrypted box:

message =

 uint8 auth[16]
uint8 len[2]
uint8 data[494]

Messages are encrypted using the salsa20poly1305 cipher. Messages sent from the client are
encrypted with the client session key, and messages sent from the server are encrypted with the
server session key. The first message sent from the client and the first message sent from the server
will use nonce 0, the second message(s) will use nonce 1, the third message(s) will use nonce 2, etc.

Inside each message is up to 494-bytes of data (“data”), along with a 2-byte length (“len”) which
specifies the actual number of bytes used in data.

As stated previously, the client must send the first message, immediately after verifying the
serverhi—the server will wait for the client’s first message before trusting the client. If, when it is
time for the client to send its first message, it does not have any data available to send (for example,
in a server-sends-first protocol), then the client will immediately send a message with len set to 0.

When the server receives the client’s first message, the encrypted box will be verified+decrypted.
If this successful, the server then trusts the client. If both the client and server made it this far
without any errors, they have reached a mutual trust. They may now freely exchange messages, in
addition to forwarding packets outside of the tunnel.

2 Alternative Ciphers
The choice of xsalsa20poly1305, salsa20poly1305, and curve25519 were due to easy access to
high-performance implementations at the time of this writing. The protocol need not be bound to
these choices: it should be trivial to provide command-line options to a saltunnel implementation
to allow alternate encryption and key exchange algorithms, without affecting the protocol.

3 Security Features
The saltunnel protocol provides the following security features:

Confidentiality and Integrity
The saltunnel protocol uses xsalsa20poly1305 and salsa20poly1305 as its primary symmetric
ciphers, which provide strong confidentiality and integrity.

Denial-of-Service Protection
Additionally, saltunnel has considerable denial-of-service protection: an attacker attempting to
overload a saltunnel server instance will find that his/her most cost-effective attacks are (probably)
reduced to exploiting the well-known shortcomings of TCP itself.

The use of a timestamp in the clienthi allows the server to immmediately reject any obviously-
stale connection requests. The use of machine_id and machine_counter allow the server to maintain
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an in-memory hash table to keep track of all recent connection requests, and to detect (and block)
any replay attacks.

Forward Secrecy
Forward secrecy is also provided. For each TCP connection, both the client and server generate
ephemeral curve25519 key pairs, followed by a shared session key used to encrypt all data within
that connection. After each TCP connection terminates, all ephemeral and session keys which were
used to encrypt that connection are permanently erased.

This means it is impossible for even an attacker who gains access to the shared long-term key to
retroactively decrypt any data from any previous sessions. (With one exception: an attacker who
holds both the shared long-term key k and a quantum computer can retroactively decrypt historical
connections.)

Post-Quantum Security
Since saltunnel primarily relies on 256-bit symmetric-key cryptographically, it is not necessarily
vulnerable to being broken by quantum computing attacks (e.g., Shor’s algorithm). Admittedly,
there are two pitfalls with this claim:

1. Confidentiality is broken by an attacker who holds both the shared long-term key k, and a
quantum computer.

2. saltunnel’s preqrequisite that the client and server must share a long-term key side-steps the
difficulty involved in exchange such a key in post-quantum-secure manner.

However, provided both client and server both manage to permanently keep their shared long-term
key away from attackers, post-quantum security is retained.

Message-Length Quantization
Data is sent over the network in chunks of 512 bytes. If one computer sends, for example, 7 bytes,
the data will be sent as a 512-byte encrypted chunk. This greatly reduces the amount of information
which can be inferred from network analysis.

Uniform Random TCP Data
An attacker who eavesdrops on a saltunnel connection will only see a TCP connection with same-
sized chunks of uniform random data. There are no protocol header magic bytes or patterns within
any given chunk of data. This complicates an attacker’s ability to track/fingerprint users, and makes
it difficult to write analysis tools that detect/censor the saltunnel protocol. (Obviously, tracking can
still be done at the IP layer, and patterns may still be available through timing analysis.)

4 The saltunnel tunnel
So far, this document has described the protocol which takes place between a saltunnel server
and saltunnel client. This protocol on its own is simply a symmetric-key based secure transport
protocol. This protocol, in fact, is not a TCP tunnel on its own—it is the saltunnel utility which
provides a TCP tunnel. In order to explain how the software works, consider the following scenario:
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Clyde Steve

saltunnel client

HTTP Client

127.0.0.1:80

saltunnel server*:1025

HTTP Server
127.0.0.1:80

Imagine that Clyde and Steve, who live in different households, each have their own computer
and that Clyde would like to establish a TCP session to port 80 on Steve’s computer. However, the
program Clyde is using to connect to Steve’s computer does not encrypt its traffic and is therefore
too insecure to use comfortably over a network. This is where saltunnel comes in.

First, Clyde and Steve must exchange a shared long-term key, which is placed at location on
both of their computers.

Clyde then sets up a saltunnel client from 127.0.0.1:80 to *:1025 (where * represents
whatever Steve’s public IP address is). This tells saltunnel to listen for plain, unencrypted traffic
on Clyde’s computer’s local port 80, then forward all traffic—while encrypting+authenticating it
using the saltunnel protocol—to Steve’s public port 1025.1

At the same time, Steve sets up a saltunnel server, which both listens for encrypted traffic
on its public port 1025, and forwards all traffic—while verifying+decrypting it using the saltunnel
protocol—to Steve’s own local port 80.

After all of this is complete, any program running on Clyde’s computer can connect to local port
80, and the connection will act as if it was directly connecting to Steve’s computer’s local port 80.

5 Additional resources
The saltunnel utility is available at:

https://github.com/notfed/saltunnel

This software implements the protocol and utility as defined in this document, and provides a
convenient, easy-to-use command-line interface, written in C. The code is public domain.
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1The ports used in this example are arbitrary. Any ports could be used for any of these steps.
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